4 resultados para photocatalytic hydrogen, solar irradiation, solar hydrogen, photocatalytic water splitting, semiconductoring materials, nanostructured hematite

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article charts the development of the use of thin films of nanoparticulate WO3 and how they have been used to overcome problems associated with other photocatalytic materials and bulk WO3. Current technology is described and the authors' views on the outlook for future development is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The zwitterionic forms of the two simplest alpha-amino acids, glycine and l-alanine, in aqueous solution and the solid state have been modeled by DFT calculations. Calculations of the structures in the solid state, using PW91 or PBE functionals, are in good agreement with the reported crystal structures, and the vibrational spectra computed at the optimized geometries provide a good fit to the observed IR and Raman spectra in the solid state. DFT calculations of the structures and vibrational spectra of the zwitterions in aqueous solution at the B3-LYP/cc-pVDZ level were found to require both explicit and implicit solvation models. Explicit solvation was modeled by inclusion of five hydrogen-bonded water molecules attached to each of the five possible hydrogen-bonding sites in the zwitterion and the integration equation formalism polarizable continuum model (IEF-PCM) was employed, providing a satisfactory fit to observed IR and Raman spectra. Band assignments are reported in terms of potential-energy distributions, which differ in some respects to those previously reported for glycine and l-alanine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state IR and Raman as well as aqueous solution state Raman spectra are reported for the linear di-amino acid peptide L-aspartyl-L-glutamic acid (L-Asp-L-Glu); the solution state Raman spectrum has also been obtained for the N,O-deuterated derivative. SCF-DFT calculations at the B3-LYP/cc-pVDZ level established that the structure and vibrational spectra of L-Asp-L-Glu can be interpreted using a model of the peptide with ten hydrogen-bonded water molecules, in conjunction with the conductor-like polarizable continuum solvation method. The DFT calculations resulted in the computation of a stable zwitterionic structure, which displays trans-amide conformation. The vibrational spectra were computed at the optimised molecular geometry, enabling normal coordinate analysis, which yielded satisfactory agreement with the experimental IR and Raman data. Computed potential energy distributions of the normal modes provided detailed vibrational assignments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of sustainable hydrogen production is a key target in the further facilitation of a hydrogen economy. Solar hydrogen generation through the photolytic splitting of water sensitised by semiconductor materials is attractive as it is both renewable and does not lead to problematic by-products, unlike current hydrogen sources such as natural gas. Consequently, the development of these semiconductor materials has undergone considerable research since their discovery over 30 years ago and it would seem prescient to review the more practical results of this research. Among the critical factors influencing the choice of semiconductor material for photoelectrolysis of water are the band-gap energies, flat band potentials and stability towards photocorrosion; the latter of these points directs us to focus on metal oxides. Careful design of thin films of photocatalyst material can eliminate potential routes of losses in performance, i.e., recombination at grain boundaries. Methods to overcome these problems are discussed such as coupling a photoanode for photolysis of water to a photovoltaic cell in a 'tandem cell' device.